Exam Booklet No.

#### CHEM 2410 – Organic Chemistry 1 – Fall 2017

Instructors: Erin Whitteck & Paul Bracher

# Hour Examination #3

Wednesday, November 15<sup>th</sup>, 2017 6:10–8:10 p.m. in the Lecture Halls at Saint Louis University

| Student Name (Printed) |  |
|------------------------|--|
| Student Signature      |  |

## **Instructions & Scoring**

- Please write your answers on the official answer sheet. No answers marked in this booklet will be graded.
- You may use a plastic model kit. No electronic resources or note sheets are permitted, and you may not communicate with others.
- Your exam answer sheet may be copied or scanned.
- The examination room may be monitored by audio, photo, and/or video recording.

| Problem | Points<br>Earned | Points<br>Available |
|---------|------------------|---------------------|
| I       |                  | 60                  |
| II      |                  | 6                   |
| III     |                  | 12                  |
| IV      |                  | 12                  |
| V       |                  | 10                  |
| TOTAL   |                  | 100                 |

This exam focuses on Chapters 9, 10, 11, and 12 in Janice Smith's Organic Chemistry, 4<sup>th</sup> ed.

## **Examination Instructions**

#### DO NOT TURN THE PAGE ON THIS BOOKLET UNTIL DIRECTED BY A PROCTOR TO BEGIN

#### <u>Please Make Sure to Do the Following Before Starting Your Exam</u>

- 1. Both <u>print</u> your name and <u>sign</u> the front of the answer sheet <u>and this exam booklet</u> in the appropriate boxes.
- 2. Also print your name at the <u>top</u> of the <u>back</u> of the answer sheet.
- 3. Enter your SLU Banner ID number on the front of the answer sheet and <u>bubble</u> the corresponding numbers. <u>Failure to do this correctly will result in the loss of 2 points.</u>
- 4. Write the serial number of this exam booklet on your answer sheet in the appropriate box.
- 5. Check the "Hold for Pick-Up" box on the back of the answer sheet if you want your graded sheet withheld from the distribution pile on Monday and handed back to you privately. Checking this box will delay your receipt of your graded exam.

## Please Make Sure to Do the Following After Completing Your Exam

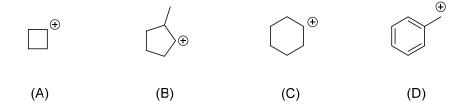
- 1. Ensure that all of your selected circles are darkened completely.
- 2. Submit your answer sheet, exam booklet, data tables, and scratch paper to the proctors. You may not remove these items from the exam room.

DO NOT TURN THE PAGE ON THIS BOOKLET UNTIL DIRECTED BY A PROCTOR TO BEGIN

**Problem I.** Multiple Choice (60 points total). Correct answers score +3 points, answers of 'E' score +1 point, and incorrect answers score 0 points. Questions filled with zero or multiple responses will score 0 points. For each question, select the best and most complete answer of the choices given. Bubble the answer, darkly, in the space provided on the answer sheet. For all questions that ask you to name or count compounds or products, include all distinct compounds that not interconvertible under ambient conditions (i.e., include or count different constitutional isomers and stereoisomers separately, but not different conformations that can interconvert).

(1) \_\_\_\_\_ How many products will be generated in significant yield in the following reaction? Count different stereoisomers as different products.

$$\begin{array}{c|c} & H_2 \\ \hline & Pd/C \end{array}$$


- (A) one product
- (B) two products
- (C) three products
- (D) four products

(2) Which of the following statements is true about the reaction in question #1?

- (A) both carbon atoms of the C=C bond are oxidized
- (B) both carbon atoms of the C=C bond are reduced
- (C) one carbon atom is oxidized, one carbon atom is reduced
- (D) this is not an oxidation/reduction reaction

(3) \_\_\_\_\_ What product is formed in highest yield from the reaction of compound **A** with excess hydroiodic acid?

(4) \_\_\_\_\_ Which of the following carbocations is most prone to rearrangement?



(5) \_\_\_\_\_ Which of the following sequences of reactions is the best choice to convert compound **B** to compound **C**?

(A) 
$$K_2Cr_2O_7$$
 1. 9-BBN  $\frac{1}{2. H_2O_2, NaOH}$ 

(D) NaC
$$\equiv$$
CH  $H_2$  1. O<sub>3</sub> Lindlar catalyst 2. CH<sub>3</sub>SCH<sub>3</sub>

(6) \_\_\_\_\_ Which of the following statements is correct regarding the conversion of **D** to **E** depicted in the scheme below?

- (A) HCl is a catalyst for this reaction
- (B) the reaction proceeds via a chloronium intermediate where the Cl atom is temporarily in a bridged, three-membered ring
- (C) as shown, this addition follows Markovnikov's Rule
- (D) the conversion of **E** back to **D** is accomplished in high yield by treatment with potassium *tert*-butoxide (KOtBu)

(7) Which of the following sequences will accomplish the synthesis of **G** from **F**?

$$F$$
  $G$ 

- (A) HCI
- (B) 1. H<sub>2</sub>O/H<sub>2</sub>SO<sub>4</sub>; 2. HCl
- (C) 1. 9-BBN; 2. H<sub>2</sub>O<sub>2</sub>, NaOH, H<sub>2</sub>O; 3. TsCl, pyridine
- (D) 1. BH<sub>3</sub>·THF; 2. H<sub>2</sub>O<sub>2</sub>, NaOH, H<sub>2</sub>O; 3. SOCl<sub>2</sub>, pyridine

#### (8) What is the IUPAC name for compound **H**?

Н

- (A) (7Z)-8-bromo-7-tert-butyl-2-methylnon-7-en-2-ol
- (B) (7E)-8-bromo-7-tert-butyl-2-methylnon-7-en-2-ol
- (C) (2Z)-2-bromo-3-tert-butyl-8-methylnon-2-en-8-ol
- (D) (2E)-2-bromo-3-tert-butyl-8-methylnon-2-en-8-ol

(9) \_\_\_\_\_ Rank the following compounds in order of their heats of complete/exhaustive hydrogenation to an alkane with excess H<sub>2</sub> and Pd/C as a catalyst. List the least exothermic first and the most exothermic last.

- (A) J < K < L < M
- (B) J < K < M < L
- (C) M < L < J < K
- (D) L < M < K < J

(10) \_\_\_\_\_ What is the product of the reaction of compound **N** with ethanol and a tiny drop of sulfuric acid?

(11) \_\_\_\_\_ Which of the following statements about the reaction shown below is true?

$$OH$$
 TsOH + H<sub>2</sub>O

- (A) the mechanism of this reaction is E1
- (B) TsOH converts –OH to –OTs, which is a better leaving group
- (C)  $\Delta H^{\circ}$  is positive for this reaction
- (D) addition of TsOH shifts the equilibrium further to the right

(12) \_\_\_\_\_ Which of the following reactions is <u>not</u> significantly flawed and will proceed as drawn?

(C) 
$$H_2SO_4$$
 OH

(13) \_\_\_\_\_ Which of the following terms accurately describes the stereochemistry of the product(s) of this reaction?

- (A) one meso compound
- (B) one achiral compound that is not meso
- (C) a racemic mixture of enantiomers
- (D) two diastereomers

(14) \_\_\_\_\_ Which of the following compounds is <u>not</u> a product of ozonolysis of compound **P**?

$$\begin{array}{c}
1. O_3 \\
\hline
2. S(CH_3)_2
\end{array}$$

Ρ

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

(15) \_\_\_\_\_ Which of the following alkenes is the <u>best</u> starting material to synthesize **Q**, 3-ethylcyclopentanol. without regard for stereochemistry?

(16) \_\_\_\_\_ Which of the following is an intermediate in the mechanism for the conversion of compound **R** to compound **S** upon treatment with HBr?

(17) \_\_\_\_\_ What is the product of the following reaction?

$$H_2O$$
 ?

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

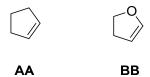
(18) \_\_\_\_\_ What is the major product **U** generated when compound **T** is treated with pyridinium chlorochromate (PCC) with dichloromethane as the solvent?

HO
OH
$$CH_2Cl_2$$

T
$$HO \longrightarrow OH$$

$$(C)$$

$$(D)$$

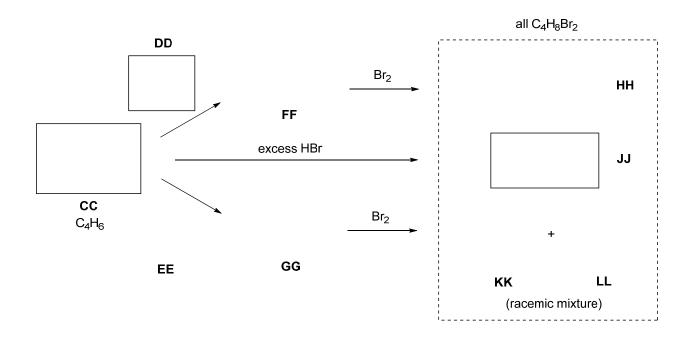

(19) \_\_\_\_\_ Rank the following compounds from <u>highest to lowest</u> boiling point. List the compound with the highest boiling point first.

- (A) |V > | > |I| > |I|
- (B) II > I > III > IV
- (C) |V > |I| > |I|
- (D) III > I > II > IV

(20) Which of the following sequences will carry out the conversion of **V** to **W**?

- (A) cold dilute KMnO<sub>4</sub>, NaOH, H<sub>2</sub>O
- (B) 1. mCPBA; 2. catalytic H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>O
- (C) 1. mCPBA; 2. catalytic NaOH, H<sub>2</sub>O
- (D) both (B) and (C) will carry out this conversion

**Problem II.** Explanation (6 points). HBr adds faster to the C=C bond of compound **BB** than compound **AA**. On your answer sheet, explain why compound **BB** reacts faster than **AA** in this reaction using drawings and a maximum of one sentence.




One-sentence explanation:

**Problem III.** Roadmap Problem. (12 points) Identify compounds/reagents **CC**, **DD**, and **JJ** in the reaction scheme below. Do not write the structures of the other compounds on your answer sheet.

Unknown compound **CC**, with molecular formula  $C_4H_6$ , reacts with reagent(s) **DD** to produce **FF**. **FF** reacts with  $Br_2$  to form a single organic product, **HH**, of molecular formula  $C_4H_8Br_2$ . Compound **CC** reacts with reagent(s) **EE** to produce **GG**. **GG** reacts with  $Br_2$  to form a racemic mixture of two products, **KK** and **LL**, both of molecular formula  $C_4H_8Br_2$ . Compound **CC** reacts with excess HBr to produce **JJ**, also of molecular formula  $C_4H_8Br_2$ . Compounds **FF** and **GG** are stereoisomers of each other.

On your answer sheet, identify **CC**, **DD**, and **JJ**. Your proposals should be consistent with all of the data provided above. Do <u>not</u> provide the structures of other compounds/reagents.



**Problem IV.** Synthesis (12 points). Provide a synthetic route—i.e, a sequence of reactions—to produce a racemic mixture of *trans*-1,2-cyclohexanediol (**NN** + **PP**) from bromocyclohexane (**MM**) and any reagents you wish. Draw each synthetic intermediate in the boxes in the template on your answer sheet and provide the necessary reagents above/below the reaction arrows. (Note: There are multiple correct answers. If you choose to complete this synthesis in fewer than three steps, just cross out any unused arrows and boxes.) Please do not draw curved arrows; we are not asking for mechanisms.

#### Template:

**Problem V.** Mechanism (10 points). Draw a sensible mechanism for the isomerization of **QQ** to **RR** in aqueous base. Remember to use proper "curved arrow notation" to account for the redistribution of electrons in the making and breaking of bonds. Show all intermediates in the reaction and any significant resonance forms that account for the stability of these intermediates. Use the template provided on your answer sheet and draw one structure in each empty box.

#### Template:

| Helium       | Se :           | neon<br>20.180    | ²₃<br><b>A</b> r | nrgon<br>9.948      | 36 | 고<br>-     | ypton     | 3.798  | 54 | e        | noue       | 31.29  | 98 | Z<br>L           | adon     | (222)    | 118 | Og     | oganesson<br>(294)      |
|--------------|----------------|-------------------|------------------|---------------------|----|------------|-----------|--------|----|----------|------------|--------|----|------------------|----------|----------|-----|--------|-------------------------|
| <b>-</b> • • |                |                   | ַ כ              |                     |    | B.         |           | +      |    |          |            | +      |    |                  |          | _        |     | Ts     | tennessine oga<br>(294) |
|              | <b>∞</b> O     | - 0               | 8 <b>\</b>       | sulfur cl           |    | Se         |           | +      |    | <u>و</u> |            | +      |    | Po<br>Do         |          | $\dashv$ |     |        | ivermorium ter          |
|              | <b>⊳</b> Z     |                   | 21 <b>T</b>      | sr                  |    |            |           | _      |    |          |            | +      |    |                  |          | $\dashv$ |     |        |                         |
|              | ی ت            |                   | ₽ <b>.</b> Z     |                     |    | <u>G</u> e |           | +      |    |          |            | +      |    | _                |          | +        |     | ш      | flerovium m<br>(289)    |
|              | s <b>&amp;</b> | boron<br>10.81    | <sup>21</sup> ₹  | aluminum<br>26.982  |    | Сa         |           | +      |    |          |            | +      |    |                  | thallium | 204.38   | 113 | ج<br>ک | nihonium<br>(286)       |
| l            |                |                   |                  |                     | 30 | Zu         | zinc      | 65.38  | 48 | ၓ        | cadmium    | 112.41 | 08 | E<br>Sign        | mercury  | 200.59   | 112 | C      | copernicium<br>(285)    |
|              |                |                   |                  |                     | 59 | 3          | copper    | +      |    | Ag       |            | +      |    |                  | plog     | $\dashv$ |     | Rg     | E                       |
|              |                |                   |                  |                     | 28 | Z          | nickel    | 58.693 | 46 | Pd       | palladium  | 106.42 | 78 | 7                | platinum | 195.08   | 110 | Ds     | farmstadtium r<br>(281) |
|              |                |                   |                  |                     | 27 | ပ          | cobalt    | +      |    | 몺        |            | +      |    |                  |          | $\dashv$ |     | Ĭ      | meitnerium (278)        |
|              |                |                   |                  |                     | 26 | Б          | iron      | 55.845 | 44 | Ru       | ruthenium  | 101.07 | 9/ | Os               | osmium   | 190.23   | 108 | Hs     | hassium<br>(277)        |
|              |                |                   |                  |                     | 25 | Σ          | manganese | 54.938 | £4 | ည        | technetium | (86)   | 72 | Re               | rhenium  | 186.21   | 107 | Bh     | bohrium<br>(270)        |
|              |                |                   |                  |                     | 24 | Ċ          | chromium  | 51.996 | 42 | Š        | molybdenum | 95.95  | 74 | >                | tungsten | 183.84   | 106 | Sg     | seaborgium<br>(269)     |
|              |                |                   |                  |                     | 23 | >          | vanadium  | 50.942 | 41 | o<br>Z   | niobium    | 92.906 | 73 | <u>a</u>         | tantalum | 180.95   | 105 | Ob     | dubnium<br>(268)        |
|              |                |                   |                  |                     | 22 | j=         | titanium  | 47.867 | 9  | Zr       | zirconium  | 91.224 | 72 | Ξ̈́              | hafnium  | 178.49   | 104 | Rf     | rutherfordium<br>(267)  |
|              |                |                   |                  |                     | 21 | Sc         | scandium  | 44.956 | 33 | >        | yttrium    | 88.906 |    | *<br>lanthanides |          |          |     | * *    |                         |
|              | ₽              | beryllium<br>9.01 | <b>S</b> 3       | magnesium<br>24.305 | 20 | ပီ         | calcium   | 40.078 | 80 | Š        | strontium  | 87.62  | 26 | Ва               | barium   | 137.33   | 88  | Ra     | radium<br>(226)         |
| hydrogen     | . <b>.</b>     | lithium<br>6.94   | Za<br>Za         | sodium<br>22.990    | 19 | ¥          | potassium | 39.098 | 37 | Rb<br>C  | rubidium   | 85.468 | 22 | ပ                | cesium   | 132.91   | 87  | Ŧ      | francium<br>(223)       |

|   | 57        | 28      | 29           | 09        | 61         | 62        | 63        | 64         | 65        | 99          | 29          | 89      | 69          | 70        | 7.1        |
|---|-----------|---------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|------------|
| 9 | P         | S       | P            | ğ         | Pm         | Sm        | 丑         | Вd         | a<br>L    | 5           | 웃           | д       | 且           | χ         | 3          |
| 3 | lanthanum | cerium  | praseodymium | neodymium | promethium | samarium  | europium  | gadoliníum | terbium   | dysprosium  | holmium     | erbium  | thulium     | ytterbium | lutetium   |
|   | 138.91    | 140.12  | 140.91       | 144.24    | (145)      | 150.36    | 151.96    | 157.25     | 158.93    | 162.50      | 164.93      | 167.26  | 168.93      | 173.05    | 174.97     |
| - | 68        | 06      | 91           | 92        | 93         | 94        | 92        | 96         | 97        | 86          | 66          | 100     | 101         | 102       | 103        |
|   | Ac        | 丘       | Ра           | <b>-</b>  | d<br>N     | Pu        | Am        | Ę          | 쓙         | უ           | Es          | Fn      | β           | 2         | ۲          |
| ? | actinium  | thorium | protactinium | uranium   | neptunium  | plutonium | americium | curium     | berkelium | californium | einsteinium | fermium | mendelevium | nobelium  | lawrencium |
|   | (227)     | 232.04  | 231.04       | 238.03    | (237)      | (244)     | (243)     | (247)      | (247)     | (251)       | (252)       | (257)   | (258)       | (259)     | (566)      |
|   |           |         |              |           |            |           |           |            |           |             |             |         |             |           |            |

### pK<sub>a</sub> Table

## **Bond Dissociation Energies (BDEs)**

|                         | Average Bond Dissociation Energies, D (kJ/mol) <sup>a</sup> |      |     |      |     |      |                  |              |                  |  |  |  |  |
|-------------------------|-------------------------------------------------------------|------|-----|------|-----|------|------------------|--------------|------------------|--|--|--|--|
| н-н                     | 436 <sup>a</sup>                                            | C-H  | 410 | N-H  | 390 | о-н  | 460              | F-F          | 159 <sup>a</sup> |  |  |  |  |
| H-C                     | 410                                                         | C-C  | 350 | N-C  | 300 | O-C  | 350              | Cl-Cl        | 243a             |  |  |  |  |
| H-F                     | 570 <sup>a</sup>                                            | C-F  | 450 | N-F  | 270 | O-F  | 180              | Br - Br      | 193 <sup>a</sup> |  |  |  |  |
| H-Cl                    | 432 <sup>a</sup>                                            | C-C1 | 330 | N-Cl | 200 | O-C1 | 200              | I-I          | 151 <sup>a</sup> |  |  |  |  |
| H-Br                    | 366 <sup>a</sup>                                            | C-Br | 270 | N-Br | 240 | O-Br | 210              | s-F          | 310              |  |  |  |  |
| H-I                     | 298a                                                        | C-I  | 240 | N-I  | _   | o-I  | 220              | s-c1         | 250              |  |  |  |  |
| H-N                     | 390                                                         | C-N  | 300 | N-N  | 240 | o-N  | 200              | S-Br         | 210              |  |  |  |  |
| H-O                     | 460                                                         | c-o  | 350 | N-O  | 200 | o-o  | 180              | s-s          | 225              |  |  |  |  |
| H-S                     | 340                                                         | C-S  | 260 | N-S  | -   | o-s  | -                |              |                  |  |  |  |  |
| Multiple covalent bonds |                                                             |      |     |      |     |      |                  |              |                  |  |  |  |  |
| C=C                     | 611                                                         | C≡C  | 835 | c=0  | 732 | o=o  | 498 <sup>a</sup> | $N \equiv N$ | 945 <sup>a</sup> |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>Exact value

## **Scratch Paper**

You may rip this sheet out of the exam booklet, but you are responsible for turning it in at the end of the exam.

Exam Booklet No.